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We compare various numerical methods for the estimation of the VaR and
the marginal VaR contribution (VaRC) in the Vasicek one-factor portfolio
credit loss model. The methods we investigate are the normal approximation,
the saddlepoint approximation, a simplified saddlepoint approximation and
importance sampling. We investigate each method in terms of speed, accu-
racy and robustness and in particular explore their abilities of dealing with
exposure concentration.

1 INTRODUCTION

Credit risk is the risk of loss resulting from an obligor’s inability to meet its
obligations. More generally, it can also include losses due to credit quality
changes. For financial institutions, it is essential to quantify the credit risk at a
portfolio level. The key issue in the portfolio credit loss modeling is the specifica-
tion of the default dependence among obligors. A common practice is utilizing a
factor model, such that the obligors are independent conditional on some common
factors, eg, state of the economy, different industries and geographical regions.

We quantify portfolio credit risk in the Vasicek model, which is the basis of the
Basel II (Basel Committee on Bank Supervision (2005)) internal rating-based (IRB)
approach. It is a Gaussian one-factor model such that the default events are driven
by a latent common factor that is assumed to follow the Gaussian distribution. It is
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a one-period model that only considers default risk, ie, loss only occurs when an
obligor defaults in a fixed time horizon. The model is able to reproduce the qualita-
tive behavior of empirical credit loss distributions, namely fat tails and high skew-
ness. Under certain homogeneity conditions, the Vasicek one-factor model leads to
very simple analytic asymptotic approximations of the loss distribution, VaR and
VaR contribution (VaRC). This asymptotic approximation works extremely well if
the portfolio consists of a large number of small exposures. The model may be
extended to portfolios that are not homogeneous in terms of default probability and
pair-wise correlation. However, the analytic approximation of the Vasicek model
can significantly underestimate risks in the presence of exposure concentrations,
ie, when the portfolio is dominated by a few obligors.

Various alternative methods to estimate the portfolio credit risk and the risk
contribution have been proposed for more general portfolios. Glasserman and
Ruiz-Mata (2006) provide an interesting comparison of methods for computing
credit loss distributions. The methods considered there are plain Monte Carlo sim-
ulation, a recursive method according to Andersen et al (2003), the saddlepoint
approximation and the numerical transform inversion as in Abate et al (2000).
They conclude that the plain Monte Carlo method is the best method in a multi-
factor setting in terms of speed and accuracy, followed by the saddlepoint approx-
imation. They find that the recursive method performs well when the number of
obligors is small but becomes slow as the number of obligors increases, particu-
larly for high loss levels. This is because the recursive method computes the entire
loss distribution and when the number of obligors increases, the maximum total
loss increases in the meantime. They also find that the numerical transform inver-
sion method gives acceptable estimates for small loss levels, but the approxima-
tion worsens for higher loss levels. This is not surprising. This method numerically
inverts the Bromwich integral, whose integrand becomes highly oscillatory and
extremely difficult to handle for high loss levels.

The perspective of our comparison in this paper is quite different from Glasser-
man and Ruiz-Mata (2006). First, we concentrate on the one-factor model. Second,
we are mainly interested in VaR� when � is close to 1, ie, high loss levels. Third, we
are also interested in the estimation of marginal VaRC. Finally, we would like to
investigate how well the problem of exposure concentration can be handled.

We point out that the conclusions of Glasserman and Ruiz-Mata (2006) are
based on portfolios with less than 1,000 obligors. But in practice, it will not be sur-
prising that a bank’s credit portfolio has more than tens of thousands of obligors.
The plain Monte Carlo simulation will certainly become more demanding in com-
putation time as the portfolio size increases. After all, a true problem with plain
simulation is the estimation of the marginal VaRC, which is based on the scenarios
that portfolio loss equals VaR. These are extremely rare events. We should for this
reason consider importance sampling as in Glasserman and Li (2005) and Glasser-
man (2006) instead of plain simulation. We will drop the recursive method and the
numerical transform inversion method for obvious reasons given above. Note that
Debuysscher and Szegö (2003) suggest that the numerical inversion can be



expedited by fast Fourier transform (FFT). However, a straightforward implemen-
tation of FFT also suffers from the same problem as the numerical transform
inversion. We should instead include the normal approximation method as in
Martin (2004), which is a direct application of the central limit theorem (CLT).
In addition, we consider a simplified saddlepoint approximation, simplified
saddlepoint approximation for the estimation of VaRC.

The rest of this paper is organized as follows: in Section 2, we introduce the
Vasicek one-factor model; Section 3 reviews the various alternative methods we
want to investigate, ie, the normal approximation method, the saddlepoint approx-
imation method, the simplified saddlepoint approximation method and impor-
tance sampling; a stylized portfolio is considered in Section 4; Section 5 discusses
the robustness of each method; and Section 6 concludes along with some further
discussions.

2 THE VASICEK MODEL

Consider a credit portfolio consisting of n obligors. Any obligor i can be character-
ized by three parameters: the exposure at default EADi, the loss given default LGDi

and the probability of default PDi. Obligor i is subject to default after a fixed time
horizon and the default can be modeled as a Bernoulli random variable Di such that

Define the effective exposure of obligor i by wi = EADi � LGDi, then the loss
incurred because of the default of obligor i is given by

Li = EADi � LGDi � Di = wiDi

It follows that the portfolio loss is given by

Value-at-risk is among the most popular risk measures for the evaluation of
capital needed as a buffer against extreme losses. Let � be some given confidence
level, the VaR is simply the �-quantile of the loss distribution of L. Thus,

VaR� = inf{x : � (L � x) � �)} (1)

The VaRC measures how much each obligor contributes to the total VaR of a
portfolio. Under some continuity conditions, the VaRC coincides with the condi-
tional expectation of Li given that the portfolio loss L is equal to VaR� (L), ie,

(2)

For more details, see Tasche (2000) and Gourieroux et al (2000).
The Vasicek model is named after a series of Vasicek’s papers (1987, 1991,

2002). It assumes that the standardized asset log-return Xi of obligor i is standard

VaRCi,� � wi

�VaR�

�wi

(L) � wiE[Di�L � VaR�(L)]

L � �
n

i�1

Li � �
n

i�1

wiDi

Di � {1  with probability PDi

0  with probability 1 � PDi

Computation of VaR and VaRC in the Vasicek model 77

Technical Report www.journalofcreditrisk.com



normally distributed. Default occurs when Xi is less than some pre-specified
threshold ci, where �(Xi 	 ci) = PDi , so that . The modeling of the

dependence structure among counterparties in the portfolio is simplified by the
introduction of a common factor that affects all counterparties. Xi is decomposed 
into a systematic part Y and an idiosyncratic part Zi such that

(3)

where Y and Zi are independent standard normal random variables. In case 
i = 

for all i, the parameter 
 is called the common asset correlation.

One can derive that the VaR and the VaRC at the �-percentile for an infinitely
large portfolio without exposure concentration are as follows:

(4)

(5)

where � denotes the cumulative distribution function (CDF) of the standard
normal distribution. For more details, see Emmer and Tasche (2005) and Huang
et al (2007).

The asymptotic Vasicek approximations (4) and (5) work well for portfolios
consisting of an infinite number of small obligors. These formulas are less suit-
able and tend to underestimate risks, for portfolios with few obligors or portfolios
dominated by a few large exposures. In the next section, we compare alternative
numerical methods to deal with the problem of exposure concentration.

3 NUMERICAL METHODS

Here, we give a brief introduction to the numerical methods we want to compare
for the estimation of VaR and VaRC, among which the saddlepoint approximation
is a method proposed by Huang et al (2007).

3.1 NORMAL APPROXIMATION

The normal approximation is a direct application of the central limit theorem
(CLT) and can be found in Martin (2004). When the portfolio is not sufficiently
large for the law of large numbers to hold or not very homogeneous, unsystematic
risk arises. We then need to take into account the variability of portfolio loss L
conditional on the common factor Y. This can easily be approximated by applying
the CLT. Conditional on the common factor Y, the portfolio loss L is normally dis-
tributed with mean µ(Y) and variance �2(Y) such that

(6)
(Y) � �
n

i�1

wipi (Y)

VaRCi,� � wi� �  

��1(PDi) � �
i�
�1(�)

�1 � 
i

 �
VaR� � �

i
wi�  � 

��1(PDi) � �
i�
�1(�)

�1 � 
i
�

Xi � �
iY � �1 � 
i Zi

Di � 1{Xi 	 ci}
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(7)

where . It follows that the conditional 

tail probability reads

The unconditional tail probability1 can then be obtained by integrating over Y, ie,

(8)

To obtain the VaRC in the current setting, we first differentiate P (L � x) with
respect to the effective exposure:

(9)

with

(10)

(11)

and � the probability density function (PDF) of the standard normal distribution.
Now replace x by VaR� in formula (9). As P(L � VaR�) � 1 – �, the left-hand side
of Equation (9) becomes zero, and by rearranging terms, we obtain the following
VaRC

(12)

wi
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1 There are also attempts to find an analytic approximation to

E[P(L(Y) > x) – P(µ(Y) > x)]

which is known as the granularity adjustment. For more details, see Gordy (2003) and Wilde
(2001).



The normal approximation is also applied in Shelton (2004) for collateralised
debt obligation (CDO)/CDO-squared pricing. Zheng (2006) employs higher
order approximations as an improvement to the CLT to compute credit default
swap (CDS)/CDO-squared transactions. In this paper, we will restrict ourselves
to standard normal approximation as in Martin (2004).

3.2 SADDLEPOINT APPROXIMATION

It is well known that saddlepoint approximation provides accurate estimates to
very small tail probabilities. This makes it a very suitable technique in the context
of portfolio credit loss. The saddlepoint approximation to a random variable of
finite sum relies on the existence of the moment generating 

function MX(t) = E(etX). For Xi with known analytic moment generating function’s
MXi, the moment generating function of the sum X is the product of moment
generating functions of Xi, ie,

Let KX(t) = log MX(t) be the cumulant generating function (CGF) of X. The inverse
moment generating function of X, known as the Bromwich integral, can then be
written as

(13)

with .
The saddlepoint, ie, the point at which KX(t) – tx is stationary, is a t � t~ such that

(14)

The density fX(x) and the tail probability � (X � x) can be approximated by KX(t)
and its derivatives at t~.

There are several variants of saddlepoint approximation available and we take
the Daniels (1987) formula for the density

(15)

and the Lugannani–Rice (1980) formula for the tail probability

(16)

where and z1 � .
The saddlepoint approximation is usually highly accurate in the tail of a

distribution. The use of saddlepoint approximation in portfolio credit loss is pio-
neered in a series of articles by Martin et al (2001a, b). Gordy (2002) showed that

sgn( t~)�2[x t~ � K( t~) ]zw � t~�K��( t~)

�(X �  x) � 1 � � (zl) � �(zl)� 1
zw

�
1
zl�

fX(x) �
�(zl)

�K��(t~){1 � �� 5K���( t~)2

24K��( t~)3
�

K(4)( t~)

8K��( t~)2 	}

K�X ( t~) � x

j � ��1

fX(x) �
1

2�j 

�j�

�j�

exp  (KX(t) � tx)dt

Mx(t) � �n

i�1

Mxi (t)

X � � n

i�1 Xi
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saddlepoint approximation is fast and robust when applied to CreditRisk+. All of
them apply saddlepoint approximation to the unconditional moment generating
function of loss L, despite the fact that the Li are not independent. Annaert et al
(2006) show that the procedure described in Gordy (2002) may give inaccurate
results in case of portfolios with high skewness and kurtosis in exposure size.

Huang et al (2007) apply the saddlepoint approximation to the conditional
moment generating function of L given the common factor Y, so that the Li are
independent. This is the situation for which saddlepoint approximation will work
well. In this way, a uniform accuracy of density and tail probability for different
levels of portfolio loss L is achieved at the expense of some extra computational
cost: Equation (14) needs to be solved once for each realization of Y. It is also
shown in Huang et al (2007) by a numerical example that the accuracy of the sad-
dlepoint approximation applied to the conditional moment generating function is
not impaired by a high skewness and/or kurtosis in the exposure size.

Martin and Ordovás (2006) compare the application of saddlepoint approxima-
tion to the unconditional moment generating function and to the conditional
moment generating function. They confirm that the latter (called indirect
approach therein) is more accurate and more generally applicable. The use of the
saddlepoint approximation is also recommended by Yang et al (2006) and
Antonov et al (2005) in the context of CDO pricing, both adopting the indirect
approach.

As for the computation of VaRC, Huang et al (2007) give the following formula

(17)

and propose a double saddlepoint approximation for both integrals in the numera-
tor and denominator. This requires finding for each obligor i and each Y a saddle-
point t~i in addition to Equation (14) that solves

(18)

3.3 SIMPLIFIED SADDLEPOINT APPROXIMATION

For the calculation of VaRC, Martin et al (2001b) propose the following estimate,
also under the name of a saddlepoint approximation,

(19)

in the case of independent obligors. Here, KL(t) = log E [etL] is the CGF of L, t~

is the solution of K�L(t) = VaR� and pi is the default probability of obligor i. This

VaRCi,� �
wi

t

 
�KL(t)

�wi

 � t� t� �
wipi e

wi t�

1 � pi � pie
wi t�

�
k� i

wkpk(Y)ewkt

1 � pk(Y) � pk(Y)ewkt
� VaR��  wi

wi

�VaR�

�wi

� wi

EY �

�j�

� j�

pi(Y)ewit

1 � pi(Y) � pi(Y)ewit
exp(K(t, Y) � tVaR�)dt 	

EY �

�j�

� j �

exp(K(t, Y) �   tVaR�)dt]

Computation of VaR and VaRC in the Vasicek model 81

Technical Report www.journalofcreditrisk.com



estimate is also derived by Thompson and Ordovás (2003) based on the idea of an
ensemble and Glasserman (2006) as a result of an asymptotic approximation.

It is straightforward to extend the independent case to the conditionally inde-
pendent case as in the Vasicek model, which reads

(20)

where fL(VaR� |Y) can be computed efficiently by the saddlepoint approximations.
This formula can also be found in Antonov et al (2005).

We call the estimate given by Equation (20) an simplified saddlepoint approxima-
tion, in the sense that it is a simplified version of the double saddlepoint approxima-
tion to Equation (17). For a portfolio with n distinct obligors, the double saddlepoint
approximation requires solving for Equation (14) once and n times Equation (18) for
each realization of the common factor Y, whereas the simplified saddlepoint approx-
imation only needs the solution t~ to Equation (14). It then assumes that t~ and t~i, the
solutions to Equations (14) and (18), are more or less the same for each obligor i and
simply replace all t~i by the saddlepoint t~. Consequently, the simplified saddlepoint
approximation is generally faster than the saddlepoint approximation, but it may
give less accurate results if the above assumption is violated.

3.4 IMPORTANCE SAMPLING

Monte Carlo simulation is an all-around method which is very easy to implement.
However, Monte Carlo simulation can be extremely time-consuming. The typical
error convergence rate of plain Monte Carlo simulation is , where N is
the number of simulations, requiring a large number of simulations to obtain pre-
cise results. See Boyle et al (1997) for a review in the finance context.

Two main variance reduction techniques for Monte Carlo methods applied to
portfolio credit loss can be found in the literature. Control variates are employed
by Tchistiakov et al (2004) where the Vasicek distribution is considered as a con-
trol variable. importance sampling is adopted by Kalkbrener et al (2004) and
Merino and Nyfeler (2005) for the calculation of expected shortfall contribution
and by Glasserman and Li (2005) and Glasserman (2006) for the calculation of
VaR and VaRC. We note that the difficulty with Monte Carlo simulation mainly
concerns the determination of VaRC because the estimate expressed in formula (2)
is based on the very rare event that portfolio loss L = VaR. In this respect, control
variates do not provide any improvement. Importance sampling as suggested in
Glasserman and Li (2005) and Glasserman (2006) seems a more appropriate
choice and will be adopted here.

The importance sampling procedure consists of two steps:

(1) Mean shifting – shift of the mean of common factors.

O(1/�N)

VaRCi,� � 

EY � fL(VaR��Y)
wipi(Y)ewit

�

1 � pi(Y) � pi(Y)ewit
� 	

EY [ fL(VaR��Y )]
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(2) Exponential twisting – change of distribution to the (conditional) default
probabilities.

With mean shifting, the common factor Y is sampled under probability measure
� that is equivalent to the original measure � such that under �, Y is normally dis-
tributed with mean µ � 0 and variance 1. The tail probability is then given by

(21)

This step will increase the probability L > x, making a rare event less rare.
The idea of exponential twisting is to choose

(22)

which increases the default probability if � > 0. This step will cluster the losses
around x, which is particularly useful for the estimation of VaRC. With these two
techniques, the tail probability can be formulated as

P(L � x) � E{E�� 1{L � x}�
i
�pi(Y)

qi(Y)�
Di

 

�1 � pi(Y)

1 � qi(Y)�
1�Di � Y 	}

q
i,�(Y)(Y) �

pi(Y)e�(Y)wi

1 � pi(Y)(e�(Y)wi � 1)

P(L � x) � E� � 1{L � x}e
�
Y� 
2

2
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(23)

To find suitable parameters for the procedures of exponential twisting and
mean shifting, Glasserman and Li (2005) and Glasserman (2006) propose to
choose that solves

K'(�(y), y) = x (24)

and µ as the solution to

where is given by Equation (24) and the exponential of which to be maximized
is the upper bound of . Note that Equation (24) is
identical to Equation (14) in the saddlepoint approximation because both methods
employ the idea of an Esscher transform.

The estimation of the VaRC is trivial. It is given by

where the superscript k denotes the kth simulated scenario and l is the likelihood
ratio .e�
Y�
2 /2��(Y)L�K(�(Y),Y)

VaRCi � wi

∑kDil
k1{Lk�VaR}

∑k l k1{Lk�VaR}

P(L � x �Y � y)exp( � y�y)
�̂(y)

max 
y

K(�̂(y),y) � �̂(y)x �
1

2
y�y

�̂(y)

� E�� e
�mY�

m2

2
 
E�[1{L � x}e

��(Y)L�K(�(Y),Y)�Y] �

� E� E�[1{L � x}e
��(Y)L�K(�(Y),Y)�Y] �



4 A STYLIZED PORTFOLIO

We consider a stylized portfolio A consisting of 11,325 obligors which only differ
in exposure size. They are categorized in six buckets; the exposure per obligor and
the number of obligors in each bucket are the following:

Bucket 1 2 3 4 5 6
Exposure 1 10 50 100 500 800
Number of obligors 10,000 1,000 200 100 20 5

Other parameters are


 = 20%, PD = 0.33%. (25)

The portfolio has a total exposure of 54,000. It is a portfolio of the so-called lower
granularity because the largest obligor has an exposure 800 times larger than the
smallest obligor. Exposure concentration is not really significant as the weight of
the largest obligor is less than 1.5% of the total exposure.

Both the normal approximation and the saddlepoint approximation calculate
the tail probability instead of the VaR directly. The VaR can then be obtained by
inverting the loss distribution. A not very sophisticated iterative solver, the bisec-
tion method, is used here for this purpose. We search the VaR in the interval with
as a lower bound the portfolio expected loss E(L) and as an upper bound the total
portfolio exposure. The two approaches also require the discretization of the com-
mon factor Y. In a one-factor setting, numerical integration methods rather than
simulation should be used for efficient and accurate calculation of the uncondi-
tional loss density and tail probability. We employ the Gaussian quadrature
method and truncate the domain of Y to the interval [–5, 5]. The probability of Y
falling out of this interval is merely 5.7 � 10–7. The speed of saddlepoint methods
strongly depends on the number of abscissas N in the discretization of Y. Most of
the computation time is spent in finding the saddlepoints. The same holds for
importance sampling with exponential twisting. We find generally that N = 100
abscissas are sufficient in terms of accuracy for the saddlepoint methods, whereas
for importance sampling, many more points are necessary to obtain an estimate
with small variance. For the normal approximation, we also adopt N = 100.

In the tables that follow “Vasicek” denotes the asymptotic approximation of
the Vasicek model and “normal approximation” denotes the normal approxima-
tion. The results given by the saddlepoint approximations are labeled by “saddle-
point approximation.” “IS-10K” stands for importance sampling with 10,000
scenarios. Its VaR estimate and the sample standard deviations are computed by
subdividing the 10,000 scenarios into 10 equally sized sub-samples.

Table 1 presents both the VaR99.9% and the VaR99.99% of the portfolio given
by various methods. Computation times are in seconds. Monte Carlo simulation
based on 10 sub-samples with 16 million scenarios each serves as our benchmark.
We also report on the standard deviation and the 95% confidence intervals beside
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the point estimates. The standard deviations of VaR99.9% and VaR99.99% are 7.7
(0.1% of the corresponding VaR) and 38.4 (0.5% of the corresponding VaR),
respectively.

Even though the portfolio has no serious exposure concentration, the VaR esti-
mates at both confidence levels obtained from the asymptotic Vasicek approxima-
tion are far from the benchmark VaR (relative errors around 5%). The normal
approximation provides a significant improvement in accuracy with only little
additional computational time. The relative errors for both VaR estimates are less
than 1%. The saddlepoint approximation is even more accurate than the normal
approximation while remaining fast. Both VaR estimates, which can be obtained
in several seconds, fall within the 95% confidence interval and have relative errors
less than 0.2%. The variance reduction of importance sampling compared with
plain simulation is especially effective in the far tail. With only 1,000 scenarios in
each sub-sample, the standard deviations of the VaR estimate are not really small.
Although the VaR estimates given by importance sampling are comparable with
those given by saddlepoint approximation, importance sampling is significantly
more computational intensive.

Regarding the VaRC, we in fact compute the VaRC of an obligor scaled by its
effective weight wi, ie,

This represents the VaRC of an obligor as a percentage of its own effective expo-
sure. Expressed as a probability, it always lies in the interval [0, 1].

VaRCs of the obligors in each bucket at loss level L = 4,000 and L = 6,800 are
given in Table 2. The simulated portfolio loss L is so sparse in the vicinity of the
VaR that we have to replace the event {L = VaR} by

(26)
�L � VaR�

VaR
	 �

�VaR�

�wi

(L) � P(Li � 1�L � VaR)
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TABLE 1 VaR99.9% and VaR99.99% of portfolio A.

VaR99.9% VaR99.99% Time

Benchmark 3960.3(7.7) 6851.6(38.4) –
95% CI* 3945.2–3975.3 6776.3–6926.9

Vasicek 3680.5 6477.0 8E–4
Normal approximation 3924 6804 2E–2
Saddlepoint approximation 3965 6841 6E+0
IS-10K 3975.3(56.4) 6836.8(84.9) 2E+3

The benchmark and IS-10K sample standard deviations (in parentheses) are calculated using 10 simu-
lated sub-samples of 16 million and 1,000 scenarios each, respectively.
* Confidence interval.
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to make our VaRC estimates meaningful.2 We face a dilemma here. A small �
reduces bias but at the expense of having only very few useful scenarios. We here
choose � = 0.5% for L = 4,000 and � = 1% for L = 6,800. The former event has a
probability around 0.004% and the latter around 0.001%. Our benchmark VaRC
estimates are both based on 12,000 such events, resulting from roughly 300 and
1,200 million scenarios, respectively. The benchmark standard deviations (in
parentheses) and confidence intervals are computed by dividing the 12,000 sce-
narios into 10 equally sized sub-samples. For importance sampling, we simply
use the same � as Monte Carlo for both loss levels. There are 316 and 772 out of
10,000 importance sampling scenarios, hence 3.16% and 7.72%, respectively, for
which L falls in the desired ranges. The effect of clustering losses around the level
of interest by importance sampling is truly significant compared with plain Monte
Carlo simulation.

It appears that saddlepoint approximation is the only method that is able to
give all VaRC estimates within the 95% confidence interval. Its maximum
absolute error of 0.33% is also the smallest among all methods. The estimates
from simplified saddlepoint approximation are similar to those with saddlepoint
approximation, especially for small exposures. In terms of speed, simplified
saddlepoint approximation is about seven times faster than saddlepoint approxi-
mation. At the same time, it has two estimates outside the 95% confidence inter-
val. The normal approximation and importance sampling have seven and five
estimates outside the 95% confidence interval, respectively. The differences to
the benchmark for all the three methods are quite small though, with maxima
1.14% (simplified saddlepoint approximation), 1.27% (normal approximation),
and 1.24% (importance sampling). Normal approximation overestimates the
VaRC of small exposures and underestimates the VaRC of large exposures,
whereas simplified saddlepoint approximation overestimates the VaRC of large
exposures. A problem with importance sampling is that the VaRCs are not
monotonically increasing with the effective weight w, which is counterintuitive.
From this perspective, 10,000 scenarios do not seem enough.

It must be finally noted that the above observations on the performance of the
various methods are not restricted to portfolios with uniform PD as we impose.
As an example, we vary the PDs of obligors in each bucket in portfolio A more
realistically as follows:

Bucket 1 2 3 4 5 6
PD 2.5% 1% 0.5% 0.33% 0.05% 0.01%

In Table 3, we report the estimated portfolio VaR99.9%. It turns out that the variation
in the PDs among individual obligors has virtually no impact on the performance

2As an alternative, Mausser and Rosen (2004) suggest the use of Harrell-Davis estimate: an 
L-estimator that computes a quantile estimate as a weighted average of multiple order statistics.



of a method. All the three methods other than the Vasicek formula again give satis-
factory approximations. Further results on computation time, VaR99.99%, and
VaRCs will not be shown as we did not find anything significantly different from
the results for the original portfolio A.

5 ANALYSIS OF ROBUSTNESS

Both the normal approximation and the saddlepoint approximation are asymptotic
approximations that become more accurate when the portfolio size increases. The
normal approximation stems from the CLT and uses merely the first two moments of
the conditional portfolio loss L(Y). Higher order approximations such as the Edge-
worth expansion provide an improvement as they take the higher cumulants of L(Y)
into account. As for the saddlepoint approximations, the Daniels formula can be
considered as a generalization of the Edgeworth expansion that makes use of explicit
knowledge of the moment generating function (Jensen (1995)). In this respect, it is
expected that the saddlepoint approximations are generally more accurate than the
normal approximation, which is confirmed by our example above. A drawback is
that the tail probability given by the Edgeworth expansion is not necessary in the
range of [0, 1] and is not always monotone. Similarly, the quantile approxima-
tions are not always monotone in the probability levels (Wallace (1958)). The
Lugannani–Rice formula may also suffer from the same problems. On the contrary,
importance sampling/simulation always gives estimates to a probability in [0, 1].

An important concern is whether the conditions of the CLT hold if severe expo-
sure concentration is present in a portfolio. Apparently if the conditions do not
hold, the normal approximation will fail. Let us now consider a portfolio B con-
sisting of a bucket of 1,000 obligors with effective exposure w1 = 1 and one large
obligor with effective exposure w2 = S, S � {20, 100}, ie,

Bucket 1 2
Exposure 1 S, S � {20, 100}
Number of obligors 1,000 1

For other parameters 
 and PD, we adopt Equation (25). The weight of the large
obligor relative to the total exposure is almost 2% when S = 20 and 10% when 
S = 100. The latter should be considered as serious exposure concentration. The
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TABLE 3 VaR99.9% of portfolio A with non-uniform PD ranging from 2.5 to 0.01%.

Benchmark Vasicek Normal Saddlepoint IS-10K
approximation approximation

VaR99.9% 5888(12.5) 5819 5882 5886 5871(63.6)
95% CI* 5863.5–5912.5

The benchmark and IS-10K sample standard deviations (in parentheses) are calculated using 10 simu-
lated sub-samples of 16 million and 1,000 scenarios each, respectively.
* Confidence interval.



binomial expansion method (Huang et al (2007)), by which the VaR and VaRC can
be computed almost exactly, will be used as the benchmark.

We consider the quantile � = 99.99%. Table 4 gives the VaR of portfolio B
obtained by various methods. The approximation error of VaR is measured by the
relative error defined as

When S = 20, we see that all methods, except Vasicek, have relative errors of less
than 2%. When S is increased to 100, both Vasicek and normal approximation
become erratic (relative error > 10%), whereas the effect of a large S on the accu-
racy of saddlepoint approximation is marginal. We remark that we have tested for
even larger S up to 1,000 (50% of the total exposure of corresponding portfolio),
and saddlepoint approximation manages to consistently give VaR99.99% estimates
with |RE| 	 2%. Importance sampling is also insusceptible to the size of S. It is as
accurate as saddlepoint approximation but demands much more computation
time.

The reason why the normal approximation does not work for S = 100 is not dif-
ficult to explain. Conditional on the common factor Y, normal approximation tries
to approximate the loss density by a normal distribution (due to the CLT). This
works quite well when S is as large as 20. However, when we have S = 100, which
is almost 10% of the total exposure, the loss density will no longer be unimodal.
A normal approximation is not able to capture this pattern and therefore can be
problematic. This is illustrated in Figure 1.

It is also worthwhile explaining how the exposure concentration is handled by
the saddlepoint approximation. Therefore, instead of computing only a quantile of
the portfolio loss, we calculate the whole loss distribution when S = 100 using our
benchmark and the saddlepoint approximation. This is demonstrated in Figure 2.
We notice that the true loss distribution is not smooth in the vicinity of 100, which is
precisely the size of the large exposure S.

RE �  
estimate � benchmark

benchmark
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TABLE 4 VaR99.99% of portfolio B.

S = 20 S = 100

VaR SD Error (%) Time VaR SD Error (%) Time

Benchmark 125 170

Vasicek 122.3 �2.13 6E�4 131.9 �22.39 1E�3
Normal 125 0.00 1E�2 149 �12.35 9E�3
approximation
Saddlepoint 126 0.80 3E�0 168 �1.18 3E�0
approximation
IS-10K 124.1 1.7 �0.72 2E�2 170.5 3.1 0.29 2E�2

Errors reported are relative errors.



Recall that the saddlepoint approximation relies on the formulation of the
Bromwich integral (13) representing a PDF. It is thus implicitly assumed that
the portfolio loss L, which is discrete when LGD is constant, can be closely
approximated by a continuous random variable that has an absolutely continuous
cumulative distribution function. The saddlepoint method thus produces a
smoothed version of the loss distribution. A more detailed discussion of the sad-
dlepoint approximations as smoothers is in Davison and Wang (2002). We see in
Figure 2 that the saddlepoint approximation to the tail probabilities is incorrect
for almost all quantiles preceding the point of non-smoothness (around the
99.6% quantile) but is again accurate for higher quantiles. It entails that, with one
or a few exceptional exposures in the portfolio, a uniform accuracy of the loss
distribution may not be achieved by a straightforward saddlepoint approximation.
This can be a problem if the quantile we are interested in precedes the non-
smoothness in the loss distribution, which usually occurs at the size of large
exposures.

A very easy algorithm can be used to retain the uniform accuracy. Suppose a
portfolio has m large exposures Si, i = 1, . . . , m with S1 � S2 � · · · � Sm. For any
loss level x < Sk, the tail probability conditional on Y can be written as
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FIGURE 1 Loss density and tail probability of portfolio B given by the normal
approximation (NA) conditional on an arbitrarily chosen common factor Y.
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(27)

The above reformulation takes into account the implicit information that when
L< x, the obligors with exposure larger than x must not default. An application of
saddlepoint approximation to the probability rather than
directly to P(L>x|Y) furthermore removes the exceptional exposure concentration
Si, i � k. It is apparently more accurate than a direct saddlepoint approximation to
P(L >x �Y). A similar idea is discussed in Beran and Ocker (2005). We call this
method the adaptive saddlepoint approximation here. As an experiment, we apply
the adaptive saddlepoint approximation to portfolio B with S = 100 and plot in
Figure 2 the loss distribution for loss levels up to but excluding L = S (in the estima-
tion of the tail probabilities, the adaptive saddlepoint approximation only differs
from a direct saddlepoint approximation for loss levels L<S). The loss distribution
given by the adaptive saddlepoint approximation matches the benchmark almost
exactly for all L<S.

Now we consider the VaRC. Table 5 presents the VaRC of both a small obligor
(VaRC1) and a large obligor (VaRC2). For the cases S = 20 and S = 100, we report
four estimates to the VaRC given by each method. The error we report here is
absolute error. Normal approximation gives fair VaRC estimates for both VaRC1
and VaRC2 when S = 20 but deviates dramatically from the benchmark when S =
100. This is in line with its performance on the VaR estimation. Saddlepoint
approximation is quite accurate for VaRC1 but becomes less accurate for VaRC2 as
S increases. simplified saddlepoint approximation resembles saddlepoint approxi-
mation in the estimates of VaRC1 but does not give satisfactory estimates to VaRC2
at all: both errors are larger than 5%. This can be understood by the fact that, as
mentioned in Subsection 3.3, the solutions to Equations (14) and (18) are indeed

P(L � ∑ i �  kLi � x � Y )

P � L � x � Y � � 1 � P�L � �
i�k

Li � x � Y��
i�k

P(Dk � 0 � Y)
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FIGURE 2 The loss distribution of portfolio B given by the saddlepoint approximation
and adaptive saddlepoint approximation when the loss distribution is not smooth at
the vicinity of S. PD = 0.0033, 
 = 0.2, S = 100.
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close for small exposures but can differ substantially for large exposures. Further
experiments show that normal approximation, saddlepoint approximation and
simplified saddlepoint approximation may all give VaRC values that are not in the
interval [0, 1] in the presence of more exceptional exposure concentrations (as is
pointed out at the beginning of this section). Importance sampling appears to be
the best method in terms of accuracy and robustness in this case.

In both portfolios A and B, importance sampling seems to perform fine for
determining VaRC. The reason for this is that the obligors in a bucket are consid-
ered identical, and we are able to take the average of all obligors in the same bucket
when estimating VaRC. This makes the simulated VaRC estimates much less
volatile. We must point out that even though importance sampling is able to cluster
the simulated losses around the VaR of interest and thus significantly increases the
probability P(L = VaR), a rather large number of replications are still necessary.

Let us consider a portfolio C consisting of 100 obligors with exposures all dif-
ferent from each other such that

wi = i, i = 1, . . . ,100 (28)

The parameters 
 and PD are again the same as in Equation (25).
Figure 3 gives scatterplots of the (scaled) VaRC (y-axis) at the loss level

L = 700, which is around VaR99.99%, against the EAD (x-axis). In the left-side
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TABLE 5 VaRC99.99% of portfolio B.

S = 20 VaRC1 (%) Error (%) VaRC2 (%) Error (%) Time

Benchmark 12.06 21.78

Vasicek 12.25 0.19 12.25 �9.53 3E�3
Normal 12.12 0.06 18.94 �2.84 1E�2
approximation
Saddlepoint 12.05 �0.01 21.70 �0.08 8E�1
approximation
Simplified saddlepoint 11.96 �0.10 27.06 5.28 3E�1
approximation
IS-10K 12.04 �0.02 22.89 1.11 1E�3

S = 100
Benchmark 8.29 87.07

Vasicek 15.45 7.16 15.45 �71.62 3E�3
Normal 12.68 4.39 43.18 �43.89 2E�1
approximation
Saddlepoint 8.89 0.60 90.79 3.72 8E�1
approximation
Simplified saddlepoint 9.15 0.86 78.52 �8.55 3E�1
approximation
IS-10K 8.12 �0.17 88.85 1.78 1E�3

Errors reported are absolute errors.



figure, we show the results given by the saddlepoint approximation, the simpli-
fied saddlepoint approximation and the normal approximation. All methods
clearly show that the VaRC increases as the EAD increases, which is highly
desirable for practical purposes. simplified saddlepoint approximation
again gives results very close to the saddlepoint approximation. Compared with
the saddlepoint approximation, the normal approximation overestimates the
VaRC of small exposures and underestimates the VaRC of large exposures. This
is consistent with the pattern shown in portfolio A. The estimates given by
importance sampling with 10,000 scenarios (IS-10K) and 100,000 scenarios
(IS-100K) are presented in the right-side of Figure 3 along with those given by
saddlepoint approximation. � as in Equation (26) is set to be 1%. The relation
between the VaRC and EAD is not clear at all with only 10,000 simulated sce-
narios. The estimates, resulting from 256 relevant scenarios, disperse all over
the area. Improvement in the performance of the VaRC estimation is discernable
when we increase the number of scenarios of importance sampling by 10 times.
The VaRC estimates are then based on 2,484 relevant scenarios, and the upward
trend of VaRC with increasing EAD is evident. However, owing to simulation
noise, the curve remains highly oscillatory and an even higher number of sce-
narios seems necessary.

6 CONCLUSIONS AND DISCUSSIONS

We have examined various numerical methods for the purpose of calculating the
credit portfolio VaR and VaRC under the Vasicek one-factor model. Each method
provides a viable solution to VaR/VaRC estimation for lower granular portfolios
and portfolios with medium exposure concentration. However, there is no perfect
method that prevails under all circumstances, and the choice of preferred method
turns out to be a trade-off among speed, accuracy and robustness.

The normal approximation is the fastest method and is able to achieve a fair
accuracy. It is however rather vulnerable because it is incapable of handling

Computation of VaR and VaRC in the Vasicek model 93

Technical Report www.journalofcreditrisk.com

FIGURE 3 VaRC of Portfolio C as a function to EAD at the loss level L = 700.
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portfolios dominated by one or a few obligors (or portfolios with multi-modal loss
density). The simplified saddlepoint approximation is second to the normal
approximation in speed and may suffer from the same problem when estimating
the VaRC.

Importance sampling does not guarantee to be the most accurate method, but
it always works fine provided a sufficient number of scenarios are drawn. It
makes no assumption on the composition of a portfolio and thus is certainly the
best choice from the perspective of robustness. Unlike the other methods, it
always gives estimates to the scaled VaRC in [0, 1]. The downside of importance
sampling is that it is rather time-consuming when compared with the other
methods. Moreover, importance sampling is not strong in the estimation of
VaRC, which is really demanding in the number of simulated scenarios.

The saddlepoint approximation is generally more accurate than normal approx-
imation and simplified saddlepoint approximation. It is also more reliable in the
sense that it can handle more extreme exposure concentration. Consequently, it
may well serve as a fast alternative to importance sampling with a good balance
between accuracy and speed. It must be emphasized that, if the loss distribution is
not smooth because of exceptional exposure concentrations and the target quan-
tile precedes the non-smoothness in the loss distribution, a straightforward imple-
mentation of saddlepoint approximation is likely to be insufficient. The adaptive
saddlepoint approximation should be employed in this situation.

We would like to point out again that the normal approximation and the saddle-
point approximation methods are all based on asymptotic approximations. They
become more accurate when the portfolio size increases. On the other hand,
importance sampling become substantially more demanding in computation time
when the portfolio size increases.

Although we mainly concentrate on the VaR-based risk contribution, we would
like to point out that all the four methods evaluated can be readily extended to
compute the risk contribution with respect to the expected shortfall (ES), a coher-
ent risk measure in the sense of Artzner et al (1999). A thorough discussion on the
ES and ES contribution can be found in Acerbi and Tasche (2002) and Tasche
(2002). The estimation of ES contributions by importance sampling is developed
in Glasserman (2006). It is shown that importance sampling is equally effective for
the estimation of the ES contributions as for the VaRCs. Huang et al (2007) provide
the saddlepoint approximation to the ES and ES contributions. A numerical exper-
iment therein shows that importance sampling and saddlepoint approximation give
comparable results for ES contributions. Formulas of the normal approximation to
the ES and ES contributions are derived in Martin (2004). The approximations are
likely to be satisfactory when the normal approximations to the tail probability and
VaRCs work well, as all approximations hinge on the CLT.

A final remark is that it is straightforward to extend the use of the four
methods to multi-factor models. The only problem with multi-factor models is
that the efficiency of the normal approximation/saddlepoint approximation can
no longer be maintained: owing to the curse of dimensionality, the Gaussian

Journal of Credit Risk Volume 3/ Number 3, Fall 2007

X. Huang et al94



quadrature rule becomes impractical as the number of factors increases. It is
therefore even desirable to combine importance sampling and the other methods,
eg, a hybrid method of importance sampling and saddlepoint approximation can
be found in Huang et al (2007). Efficient high-dimensional integration methods
are also part of our future research.
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